

Model Answer: Winter - 2019

Subject: Applied Mechanics

Sub. Code: 22203

ENGINEERING

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1		Attempt any <u>FIVE</u> of the following:		10
	a)	Define Scalar and Vector quantity		
	Ans.	Scalar Ouantity: A physical quantity having only magnitude but no	1	
		direction is called as scalar quantity.		
		Vector Quantity: A physical quantity having both magnitude as well as direction is called as vector quantity.	1	2
	b)	State VR of geared pulley block.		
	Ans.	$\mathbf{V.R.} = \frac{N_1}{N_2} \times \frac{N_3}{N_4}$	1	
		Where,		
		N_1 = Number of cogs on effort wheel.		
		N_2 = Number of teeth on pinion wheel.		
		N_3 = Number of teeth on spur wheel.	1	2
		N_4 = Number of cogs on load wheel.	1	4
		OR		
		$\mathbf{V.R.} = \frac{D}{d} \times \frac{N_3}{N_2}$	1	
		Where,		
		D = Diameter of effort wheel.		
		D = Diameter of load wheel.		
		$N_2 =$ Number of teeth on pinion wheel.	1	•
		N_3 = Number of teeth on spur wheel.		2
		OUR CENTERS :		
		KALYAN DOMBIVLI THANE NERUL DADAR Contact 0126008228	I	Page 1 / 2

Model Answer: Winter - 2019

Subject: Applied Mechanics

Sub. Code: 22203

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1	c) Ans.	State Law of polygon of forces. This law states that, "If number of coplanar concurrent forces acting simultaneously on a body, be represented in magnitude and direction by the sides of polygon taken in same order, then their resultant may be represented in magnitude and direction by the closing side of the polygon, taken in opposite order."	1	
		$F_{1} = F_{2}$ $F_{1} = F_{2}$ $F_{2} = F_{3}$ F_{4} F_{4	1	2
	d) Ans.	Define free body diagram. When all active and reactive forces acting on the free body are shown and thus the diagram obtained is called as 'free body diagram'.	2	2
	e) Ans.	 State four laws of static friction. The frictional force is always acts tangential to the plane of contact and in the opposite direction of motion. When the body is in limiting equilibrium, the ratio of limiting friction to normal reaction is constant. This ratio is called as 'coefficient of friction'. The coefficient of friction depends upon the nature of surfaces in contact and is not dependent on surface areas in contact. The static friction is more than dynamic friction. Force of friction is a self-adjusting force and it increases as the applied force increases up to limiting friction. 	¹ /2 each (any four)	2
	f) Ans.	State the centroid of semi-circle and show it on the sketch. Centroid of semi-circle : $\overline{X} = R$ $\overline{Y} = \frac{4R}{3\pi}$ (from base AB)	1⁄2 1⁄2	
		$\overline{y} = \frac{4R}{3\pi}$	1	2

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

Subject: Applied Mechanics

Sub. Code: 22203

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1	g) Ans.	State two limitations of Lami's theorem. 1. The theorem is applicable only if the body is in equilibrium. 2. The theorem is not applicable for perallel or non consumment	1	
		 The theorem is not applicable for parallel or non-concurrent force system. The theorem is not applicable for more or less than three concurrent forces. 	i each (any two)	2
		4. The theorem is not applicable for non-coplanar forces.		

Model Answer: Winter - 2019

Sub. Code: 22203

Subject: Applied Mechanics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2		Attempt any <u>THREE</u> of the following:		12
	a) Ans.	Define force system. Explain three force systems with sketches. When two or more forces acting on a body, they are said to form a system of forces or force system. Force systems with sketches:	1	
		1. Coplanar Collinear force system: The force system in which forces lies on the same plane and act along the same line of action are known as Coplanar Collinear force system.		
		2. Coplanar Concurrent force system: The force system in which forces lies on the same plane and meet at a point are known as Coplanar Concurrent force system.		
		3. Coplanar Non-concurrent force system: The force system in which forces lies on the same plane but meet at different points are known as Coplanar Concurrent force system.		
		$R \leftarrow C$ B A P F_1 F_2 F_3 B A B B A B B B B A B		

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) Model Answer: Winter - 2019

Subject: Applied Mechanics

Sub. Code: 22203

Q. 2 a) 4. Coplanar parallel force system: Ans. (i) Like parallel force system: The force system in forces lies on the same plane and are parallel to each other in same direction are known as Coplanar Like parallel system. P Q R S (ii) Unlike parallel force system: The force system in force system.	which	
 Ans. (i) Like parallel force system: The force system in forces lies on the same plane and are parallel to each other in same direction are known as Coplanar Like parallel system. P Q R S I I I Unlike parallel force system: The force system in force system in force system in the force system is the force system in the force system in the force system in the force system in the force system is the force system in the force system in the force system in the force system is the force system in the force system is the force system in the force system in the force system is the force system is the force system in the force system is the force s	which	
forces lies on the same plane and are parallel to each other in same direction are known as Coplanar Like parallel system. PQRS (ii) Unlike parallel force system: The force system in	winch	
in same direction are known as Coplanar Like parallel system. PQRS (ii) Unlike parallel force system: The force system in	acting	
system. PQRS (ii) Unlike parallel force system: The force system in	force	
(ii) Unlike parallel force system: The force system in		
(ii) Unlike parallel force system: The force system in		
(ii) Unlike parallel force system: The force system in		
	which	
torces lies on the same plane and are parallel to each oth	er but	
acting in opposite direction are known as Coplanar	Unlike	
parallel force system.		
$F_1 F_3$		
5. Non-coplanar concurrent force system: The force syst	em in	
which forces lies in different planes but meet at a point	int are	
known as Non-coplanar Concurrent force system.		
F_4 F_3 F_2 F_1		

Model Answer: Winter - 2019

Sub. Code: 22203

Subject: Applied Mechanics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2	a) Ans. b) Ans.	 6. Non-coplanar parallel force system: The force system in which forces lies in different planes but are parallel to each other are known as Non-coplanar parallel force system. 7. General force system: The force system in which forces act in different planes and they do not possess one single point of concurrency are known as General force system. 7. General force system: The force system in which forces act in different planes and they do not possess one single point of concurrency are known as General force system. (Note: Definition 1 mark and any Three force system Imark each). For a certain machine, VR is 125. To lift a load of 11.90 kN, an effort of 190 N is required. Calculate the effort required to lift a load of 72 kN and identify the type of machine. MA = ^W/_P = ^{11.90×10³}/₁₂₅ = 62.63 η = ^{MA}/_{VR} × 100 = ^{62.63}/₁₂₅ × 100 = 50.10%. Since η of machine is > 50%, the machine is reversible. Effort required to lift a load of 72 kN η = ^{MA}/_{VR} × 100 = ^{W/P}/_{VR} × 100 	1 each (any three) 1 1 1 1	4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) Model Answer: Winter - 2019

Sub. Code: 22203

Subject: Applied Mechanics

Que. No.	Sub. Oue.	Model Answers	Marks	Total Marks
Q. 2	b)	$50.10 = \frac{72 \times 10^{3} / P}{125} \times 100$ P = 1149.70 N	1	4
	c)	State law of machine and explain its significance.		
	Ans.	Law of machine: The relation between the load lifted (W) and the effort applied (P) is known as the law of machine. This relationship, when plotted on a graph results in a straight line as shown below. The equation of this straight line is,	1	
		P = (mW + C)N	1	
		Where, m = Slope of line = constant c = Intercept on y axis = effort required to start the machine.	1	
		Significance of law of machine: With the help of law of machine one can find effort required to lift any given load and vice versa.	1	4
	d)	State four laws of static friction.		
	Ans.	 The frictional force is always acts tangential to the plane of contact and in the opposite direction of motion. When the body is in limiting equilibrium, the ratio of limiting friction to normal reaction is constant. This ratio is called as 'coefficient of friction'. The coefficient of friction depends upon the nature of surfaces in contact and is not dependent on surface areas in contact. The static friction is more than dynamic friction. Force of friction is a self-adjusting force and it increases as the 	1 each (any four)	4
		applied force increases up to limiting friction.		
		OUR CENTERS : KALYAN DOMBIVLI THANE NERUL DADAR		Page 7 / 2 1

Subject: Applied Mechanics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3		Attempt any <u>THREE</u> of the following:		12
	a)	Calculate the magnitude and direction of resultant for the		
		concurrent force system as shown in figure No. 1. Show it on the		
		sketch. Use analytical method only.		
		10 KN 30° 50 40° 50 15 KN 25 KN		
	Ans.	1) Resolving all forces		
		$\Sigma Fx = \pm (10\cos 30^\circ) = (25\cos 50^\circ) = (15\cos 40^\circ) \pm 5$		
		= -13.90 kN		
		$\Sigma Fy = -(10\sin 30^\circ) - (25\sin 50^\circ) + (15\sin 40^\circ)$	1	
		= - 14.51 kN.		
		2) Magnitude of Resultant		
		$R = \sqrt{(\Sigma F x)^2 + (\Sigma F y)^2} = \sqrt{(-13.90)^2 + (-14.51)^2}$		
		R = 20.09 kN.	1	
		3) Direction of Resultant		
		$\theta = \tan^{-1} \left \frac{\Sigma F y}{\Sigma F x} \right = \tan^{-1} \left \frac{14.51}{13.90} \right $	1	
		$\theta = 46.23^{\circ}$		
		4) Position of Resultant		
		Since \sum Fx is -ve and \sum Fy is -ve,		
		Resultant lies in Third quadrant.	1	4
		O R		

Model Answer: Winter - 2019

Subject:	Applied	Mechanics
----------	---------	-----------

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	b) Ans.	State law of polygon of forces and explain it with sketch. This law states that, "If number of coplanar concurrent forces acting simultaneously on a body, be represented in magnitude and direction by the sides of polygon taken in same order, then their resultant may be represented in magnitude and direction by the closing side of the polygon, taken in opposite order."	1	
		$F_{1} = \begin{bmatrix} F_{2} \\ F_{1} \\ A \end{bmatrix} = \begin{bmatrix} F_{3} \\ F_{3} \\ F_{4} \\ F_{4} \end{bmatrix} = \begin{bmatrix} F_{3} \\ F_{2} \\ F_{4} \\ F_{4} \\ F_{4} \end{bmatrix} = \begin{bmatrix} F_{3} \\ F_{4} \\ F_$	1	
		 (a) Space diagram (b) Vector diagram (c) Vector diagram<th>2</th><th>4</th>	2	4
	c)	In a worm and worm wheel, the number of teeth on the worm wheel is 120. The diameter of effort wheel is 100mm and that of loading drum is 150mm. This worm and worm wheel lifts a load of 2.5 kN by applying 100 N effort. Calculate efficiency and effort lost in friction.		
	Ans.	Number of teeth on worm wheel (T) = 120. Radius of effort wheel (R) = $\frac{D}{2} = \frac{100}{2} = 50 \text{ mm}$ Radius of load drum (r) = $\frac{d}{2} = \frac{150}{2} = 75 \text{ mm}$ 1) Efficiency of worm and worm wheel		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) Model Answer: Winter - 2019

Subject: Applied Mechanics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	c)	Mechanical Advantage (MA) = $\frac{W}{P} = \frac{2.5 \times 10^3}{100} = 25$	1	
		Velocity Ratio (VR) = $\frac{RT}{r} = \frac{50 \times 120}{75} = 80$	1	
		$\eta = \frac{MA}{VR} \times 100 = \frac{25}{80} \times 100 = 31.25\%$	1	
		2) Effort lost in friction		
		$P_f = P - P_i$		
		$= P - \frac{W}{VR} = 100 - \frac{2.5 \times 10^3}{80}$	1	4
		$P_{f} = 68.75 N$		
	d)	A machine lifts a load of 19kN and 29kN by efforts of 700N and		
		900N respectively. Calculate the law of machine and efficiency of		
		a load of Sukin II V R is Su.		
	Ans.	Law of machine is		
		P = mW + C		
		700 = m(19000) + C (i)		
		900 = m(29000) + C		
		Subtracting equation (1) from (2)		
		$\mathbf{m} = 0.02$	1/2	
		Putting value of m in equation (1),		
		700 = (0.02 x 19000) + C	14	
		C = 320 N	72	
		Hence, law of machine is, $\mathbf{P} = (0.02)\mathbf{W} + 320 \mathbf{N}$	1	
		2) Efficiency at load of 50kN		
		P = 0.02 x 50000 + 320		
		= 1320 N	1	
		$\eta = \frac{MA}{VR} \times 100 = \frac{W/P}{VR} \times 100$		
		$=\frac{\frac{50000}{1320}}{50}\times100$		
		= 75.76%	1	4

Sub. Code: 22203

Subject: Applied Mechanics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 4		Attempt any <u>THREE</u> of the following:		12
	a)	Calculate the resultant of two concurrent forces of magnitudes of 25 kN and 50 kN with included angle of 55°.		
	Ans.	1) Magnitude of Resultant		
		$R = \sqrt{P^2 + Q^2 + 2PQ \times \cos\theta}$	1	
		$=\sqrt{25^2+50^2+2\times25\times50\times\cos55^\circ}$		
		$= \sqrt{625 + 2500 + 1433.94}$		
		$\mathbf{R} = 67.52 \ \mathbf{kN}$	1	
		2) Direction of Resultant	_	
		$\alpha = \tan^{-1} \left(\frac{Q \sin \theta}{P + Q \cos \theta} \right) = \tan^{-1} \left(\frac{50 \sin 55^{\circ}}{25 + 50 \cos 55^{\circ}} \right)$	1	
		$\alpha = 37.34^{\circ}$	1	4
		(Note: Considering the forces P and Q of same nature).		
	b)	A weight of 1.25 kN is attached by two ropes as shown in figure No.2. Calculate the tension in the ropes.		
			1	
	Ans.	1.25 KN 1.25 KN 1.25 KN Fig. No. 2 F.B.D.	1	
		Applying Lami's Theorem at 'C' $\frac{T_1}{\sin 145^\circ} = \frac{T_2}{\sin 125^\circ} = \frac{1.25}{\sin 90^\circ}$	1	
		$T_1 = \sin 145^{\circ} x \frac{1.25}{\sin 90^{\circ}} = 0.717 \text{ kN}$	1	
		$T_2 = \sin 125^{\circ} x \frac{1.25}{\sin 90^{\circ}} = 1.024 \text{ kN}$	1	4
		OR		

Subject: Applied Mechanics

Model Answer: Winter - 2019

Subject: Applied Mechanics

Sub. Code: 22203

Contact - 9136008228

Subject: Applied Mechanics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 4	e)	Applying Lami's theorem at 'O' $\frac{R_A}{\sin 10^\circ} = \frac{R_B}{\sin 90^\circ} = \frac{750}{\sin 100^\circ}$	1	
		$R_A = \sin 10^{\circ} x \frac{750}{\sin 100^{\circ}} = 132.25 \text{ kN}$	1	
		$R_{\rm B} = \sin 90^{\circ} x \frac{750}{\sin 100^{\circ}} = 761.57 \text{ kN}$	1	4
		OR		
		$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	1	
		$ \Sigma F x = 0 R_A - R_B \cos 80^\circ = 0 R_A - 0.174 R_B = 0 $ (i)	1	
		$\Sigma Fy = 0$ $R_{B} \sin 80^{\circ} - 750 = 0$ $R_{B} = 761.57 \text{ kN}$ Put this value in equation no.(i)	1	
		$R_A - 0.174 \ge 761.57 = 0$ $R_A = 132.51 \text{ kN}$	1	4

Model Answer: Winter - 2019

Subject: Applied Mechanics

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) Model Answer: Winter - 2019

Subject: Applied Mechanics

Sub. Code: 22203

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

Subject: Applied Mechanics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 5	c)	Resolution of Forces	1	
		$\Sigma Fx = -(100\cos 35^\circ) + 500 = +$ 418.08 N	-	
		$\Sigma Fy = + (100 \sin 35^\circ) + 500 - 300 = + 257.36 N$	1	
		Magnitude of resultant		
		$R = \sqrt{(\Sigma F x)^2 + (\Sigma F y)^2} = \sqrt{(418.08)^2 + (257.36)^2}$		
		R = 490.94 N.	1	
		Direction of Resultant		
		$\theta = \tan^{-1} \left \frac{\Sigma F y}{\Sigma F x} \right = \tan^{-1} \left \frac{257.36}{418.08} \right $		
		θ = 31.62° with the positive X-axis in First quadrant.	1	
		Position of Resultant (from A)		
		According to the Varignon's theorem		
		$\Sigma MFA = MRA$		
		Let resultant lies at ' x ' perpendicular distance from point 'A'		
		$+(300 \times 5) - (500 \times 2.5) = \mathbf{R} \times \mathbf{x}$		
		$250^{\circ} = 490.94^{\circ} x$	1	
		x = 0.51 m	1	
		As the value of Σ MFA is +ve, therefore resultant should produce		
		clockwise moment' about 'A' point at a perpendicular distance of $x = 0.51$ m as shown in figure below.		
		R ~		
		100 N \$ 100 sin35		
		300N		
			1	6
		AB = 2.5 m		
		8c=5m		
		C 500 N		
		500 N		

Subject: Applied Mechanics

Total

Marks

Subject: Applied Mechanics

Que.

No.

Q. 6

Sub. Code: 22203

Sub.
Que.Model AnswersMarksb)Locate the centroid of a shaded portion of a lamina as shown in
Figure No.8.Image: Control of a lamina as shown in
Figure No.8.Ans.Image: Control of a lamina as shown in
Figure No.8.Image: Control of a lamina as shown in
Image: Control of a lamina as sh

Subject: Applied Mechanics

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
2.0	()	Locate the center of gravity for the solid as shown in Figure No. 9.		
	Ans.	(2) sphere 200 mm op		
		cylinder	1	
		$300 \text{ mm} \frac{d}{d} CG_{\odot}^{\dagger} \stackrel{(1)}{\square} \Xi$	1	
		$\overline{\mathbf{Y}}$		
		Let, Fig. 1 = Cylinder and Fig. 2 = Sphere		
		1) Volume calculations		
		V_1 = Volume of Cylinder		
		$=\pi R^2 h = \pi (150)^2 \times 400$	1	
		$= 28.274 \times 10^6 \text{ mm}^3$		
		$V_2 = Volume of Sphere$		
		$=\frac{4}{3}\pi R^{3}=\frac{4}{3}\pi (100)^{3}=4.188 \text{ x } 10^{6} \text{ mm}^{3}$	1	
		$V = V_1 + V_2 = 28.274 \times 10^6 + 4.188 \times 10^6 = 32.462 \times 10^6 \text{ mm}^3$		
		2) \overline{X} calculation		
		As the given composite solid is symmetric about Y-Y axis, CG lies on		
		the axis of symmetry.		
		$\overline{X} = \frac{D}{2} = \frac{300}{2} = 150 \text{ mm}$	1	
		(3) \overline{Y} calculation		
		$y_1 = \frac{h}{2} = \frac{400}{2} = 200mm$		
		$y_2 = 400 + radius of sphere = 400 + 100 = 500 mm$	1	
		$\overline{Y} = \frac{V_1 y_1 + V_2 y_2}{V} = \frac{(28.274 \times 10^6 \times 200) + (4.188 \times 10^6 \times 500)}{32.462 \times 10^6}$		
		$\overline{Y} = 238.703 \text{ mm}$	1	۲
				0