Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1	g) Ans.	State two limitations of Lami's theorem. 1. The theorem is applicable only if the body is in equilibrium. 2. The theorem is not applicable for parallel or non-concurrent force system.	$\mathbf{1}$ each 3. The theorem is not applicable for more or less than three (any concurrent forces. 4. The theorem is not applicable for non-coplanar forces.	$\mathbf{2}$
two)				

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2	a) Ans.	4. Coplanar parallel force system: (i) Like parallel force system: The force system in which forces lies on the same plane and are parallel to each other acting in same direction are known as Coplanar Like parallel force system. (ii) Unlike parallel force system: The force system in which forces lies on the same plane and are parallel to each other but acting in opposite direction are known as Coplanar Unlike parallel force system. 5. Non-coplanar concurrent force system: The force system in which forees lies in different planes but meet at a point are known as Non-coplanar Concurrent force system.		

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2	Ans.	6. Non-coplanar parallel force system: The force system in which forces lies in different planes but are parallel to each other are known as Non-coplanar parallel force system. 7. General force system: The force system in which forces act in different planes and they do not possess one single point of concurrency are known as General force system. (Note: Definition 1 mark and any Three force system 1mark each). For a certain machine, VR is 125 . To lift a load of 11.90 kN , an effort of 190 N is required. Calculate the effort required to lift a load of $\mathbf{7 2} \mathbf{k N}$ and identify the type of machine. $\begin{aligned} & \text { MA }=\frac{W}{P}=\frac{11.90 \times 10^{3}}{190}=\mathbf{6 2 . 6 3} \\ & \eta=\frac{M A}{V R} \times 100=\frac{62.63}{125} \times 100=\mathbf{5 0 . 1 0 \%} \end{aligned}$ Since η of machine is $>\mathbf{5 0 \%}$, the machine is reversible. Effort required to lift a load of $\mathbf{7 2} \mathbf{~ k N}$ $\eta=\frac{M A}{V R} \times 100=\frac{W / P}{V R} \times 100$	1 each (any three)	4

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Que. \\
No.
\end{tabular} \& \begin{tabular}{l}
Sub. \\
Que.
\end{tabular} \& Model Answers \& Marks \& Total Marks \\
\hline Q. 3 \& \begin{tabular}{l}
b) \\
Ans. \\
c) \\
Ans.
\end{tabular} \& \begin{tabular}{l}
State law of polygon of forces and explain it with sketch. \\
This law states that, "If number of coplanar concurrent forces acting simultaneously on a body, be represented in magnitude and direction by the sides of polygon taken in same order, then their resultant may be represented in magnitude and direction by the closing side of the polygon, taken in opposite order." \\
(a) Space diagram \\
(b) Vector diagram \\
Consider four forces \(\mathrm{F} 1=\mathrm{AB}, \mathrm{F} 2=\mathrm{BC}, \mathrm{F} 3=\mathrm{CD}\), and \(\mathrm{F} 4=\mathrm{DE}\) acting at a point ' O ' as shown in space diagram. Label all the forces by Bow's notation. \\
Considering suitable scale for vector diagram and find vector length for different forces. \\
Draw vector \(\mathrm{ab} / / \mathrm{AB}, \mathrm{bc} / / \mathrm{BC}, / \mathrm{cd} / / \mathrm{CD}\), and de // DE as shown in the vector diagram to represent the forces F1, F2, F3, and F4 respectively. abcde is an open polygon. Join the first point ' \(a\) ' and last point ' \(e\) '. The closing side 'ae' of the polygon represents the resultant of all the forces in magnitude and direction. In space diagram, through ' O ' draw line parallel to 'ae' to locate the position of the resultant. Measure angle ' \(\theta\) ', which gives the direction of resultant with the horizontal. \\
In a worm and worm wheel, the number of teeth on the worm wheel is 120 . The diameter of effort wheel is 100 mm and that of loading drum is 150 mm . This worm and worm wheel lifts a load of 2.5 kN by applying 100 N effort. Calculate efficiency and effort lost in friction. \\
Number of teeth on worm wheel \((T)=120\). \\
Radius of effort wheel \((\mathrm{R})=\frac{D}{2}=\frac{100}{2}=50 \mathrm{~mm}\) \\
Radius of load drum \((\mathrm{r})=\frac{d}{2}=\frac{150}{2}=75 \mathrm{~mm}\) \\
1) Efficiency of worm and worm wheel
\end{tabular} \& 1
1
1

1 \& 4

\hline
\end{tabular}

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
	c)	A beam is loaded as shown in figure No. 3. Calculate its support reactions using graphical method only. FOR SPACE DIAGRAM Scale: $1 \mathrm{~cm}=1 \mathrm{~m}$ SPACE DIAGRAM FUNICULARSPOLYGON FOR VECTOR/POLAR DIAA. scale: $1 \mathrm{~cm}=200 \mathrm{~N}$. $R_{A}=1(P S) \times$ scall $=2.075 \times 200$ $R_{A}=415 \mathrm{~N}$ $\begin{aligned} R_{B} & =\lambda(r \mathrm{~s}) \times \text { scale } \\ & =2.425 \times 200 \\ R_{B} & =485 \mathrm{~N} \end{aligned}$ VECTOR/POLAR DIAGRAM. (Note: Answer may vary by $\pm 2 \mathrm{~N}$) A body weighing 250 N is resting on a rough horizontal plane and is just moved by a horizontal force of $100 \mathbf{N}$. Calculate coefficient of friction. Also calculate magnitude and direction of the resultant reaction. For limiting equilibrium $\begin{aligned} & \Sigma \mathrm{Fx}=0 \\ & 100-\mathrm{F}=0 \end{aligned}$ OUR CENTERS .	1	4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

Model Answer: Winter - 2019

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(ISO/IEC - 27001-2013 Certified)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 6	a) Ans.	Attempt any TWO of the following: Locate the centroid of a lamina as shown in Figure No.7. Fig. No. 7 (1) Area calculation $\mathrm{a}_{1}=$ Area of semi-circle $=\frac{\pi R^{2}}{2}=\frac{\pi \times 150^{2}}{2}=\mathbf{3 5 . 3 4} \times \mathbf{1 0}^{\mathbf{3}} \mathrm{mm}^{2}$ $\mathrm{a}_{2}=$ Area of rectangle $\begin{aligned} &=(\mathrm{bxd})=(700 \times 300)=\mathbf{2 1 0} \times 1 \mathbf{1 0}^{\mathbf{3}} \mathbf{m m}^{2} \\ & \mathrm{~A}=\mathrm{a}_{1}+\mathrm{a}_{2} \\ &=\left(35.34 \times 10^{3}\right)+\left(210 \times 10^{3}\right)=\mathbf{2 4 5 . 3 4} \times \mathbf{1 0}^{\mathbf{3}} \mathbf{m m}^{2} \end{aligned}$ (2) \bar{X} calculation $\mathrm{x}_{1}=\mathrm{R}-\frac{4 R}{3 \pi}=150-\frac{4 \times 150}{3 \pi}=\mathbf{8 6 . 3 4} \mathbf{~ m m}$ $\mathrm{x}_{2}=\frac{b}{2}+R=\frac{700}{2}+150=\mathbf{5 0 0} \mathbf{~ m m}$ $\bar{X}=\frac{a_{1} x_{1}+a_{2} x_{2}}{A}=\frac{\left(35.34 \times 10^{3} \times 86.34\right)+\left(210 \times 10^{3} \times 500\right)}{245.34 \times 10^{3}}$ $\bar{X}=\mathbf{4 4 0 . 4 1 ~ m m}$ (3) \bar{Y} calculation As the given composite section symmetric about $\mathrm{x}-\mathrm{x}$ axis, therefore C.G. lies on the axis of symmetry. $\bar{Y}=\frac{d}{2}=\frac{300}{2}=\mathbf{1 5 0} \mathbf{~ m m}$	1	12

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 6	b) Ans.	Locate the centroid of a shaded portion of a lamina as shown in Figure No.8. Let, Fig. 1 - Rectangle AND Fig. 2 - Semicircle 1) Area Calculation $\mathrm{a}_{1}=$ Area of rectangle $=(\mathrm{b} \times \mathrm{d})=(800 \times 300)=\mathbf{2 4 0} \times \mathbf{1 0}^{\mathbf{3}} \mathbf{m m}^{\mathbf{2}}$ $\mathrm{a}_{2}=$ Area of semi-circle $=\frac{\pi R^{2}}{2}=\frac{\pi \times 150^{2}}{2}=\mathbf{3 5 . 3 4} \times \mathbf{1 0}^{3} \mathrm{~mm}^{2}$ $A=a_{1}-a_{2}=\left(240 \times 10^{3}\right)-\left(35.34 \times 10^{3}\right)=\mathbf{2 0 4 . 6 6} \times \mathbf{1 0}^{\mathbf{3}} \mathbf{m m}^{2}$ 2) \bar{X} calculation $\begin{aligned} & \mathrm{x}_{1}=\frac{b}{2}=\frac{800}{2}=400 \mathrm{~mm} \\ & \mathrm{x}_{2}=100+\mathrm{R}=100+150=\mathbf{2 5 0} \mathbf{~ m m} \\ & \bar{X}=\frac{a_{1} x_{1}-a_{2} x_{2}}{A}=\frac{\left(240 \times 10^{3} \times 400\right)-\left(35.34 \times 10^{3} \times 250\right)}{204.66 \times 10^{3}} \\ & \bar{X}=\mathbf{4 2 5 . 9 0} \mathbf{~ m m} \end{aligned}$ (3) \bar{Y} calculation $\begin{aligned} & \mathrm{y}_{1}=\frac{d}{2}=\frac{300}{2}=150 \mathrm{~mm} \\ & \mathrm{y}_{2}=300-\frac{4 R}{3 \pi}=300-\frac{4 \times 150}{3 \pi}=236.34 \mathrm{~mm} \end{aligned}$ $\bar{Y}=\frac{a_{1} y_{1}-a_{2} y_{2}}{A}=\frac{\left(240 \times 10^{3} \times 150\right)-\left(35.34 \times 10^{3} \times 236.34\right)}{204.66 \times 10^{3}}$ $\bar{Y}=\mathbf{1 3 5 . 0 9} \mathbf{~ m m}$	1 1	6

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answers \& Marks \& Total Marks \\
\hline Q. 6 \& \begin{tabular}{l}
c) \\
Ans.
\end{tabular} \& \begin{tabular}{l}
Locate the center of gravity for the solid as shown in Figure No. 9. \\
Fig. No. 9 \\
Let, Fig. \(1=\) Cylinder and Fig. \(2=\) Sphere. \\
1) Volume calculations \\
\(\mathrm{V}_{1}=\) Volume of Cylinder
\[
\begin{aligned}
\& =\pi \mathrm{R}^{2} \mathrm{~h}=\pi(150)^{2} \times 400 \\
\& =\mathbf{2 8 . 2 7 4} \mathbf{\times 1 0} \mathbf{1 0}^{\mathbf{~ m m}}
\end{aligned}
\] \\
\(\mathrm{V}_{2}=\) Volume of Sphere
\[
=\frac{4}{3} \pi R^{3}=\frac{4}{3} \pi(100)^{3}=4.188 \times 10^{6} \mathrm{~mm}^{3}
\]
\[
\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}=28.274 \times 10^{6}+4.188 \times 10^{6}=\mathbf{3 2 . 4 6 2} \times \mathbf{1 0}^{6} \mathbf{~ m m}^{\mathbf{3}}
\] \\
2) \(\bar{X}\) calculation \\
As the given composite solid is symmetric about Y-Y axis, CG lies on the axis of symmetry.
\[
\bar{X}=\frac{D}{2}=\frac{300}{2}=\mathbf{1 5 0} \mathbf{~ m m}
\] \\
(3) \(\bar{Y}\) calculation
\[
\mathrm{y}_{1}=\frac{h}{2}=\frac{400}{2}=200 \mathrm{~mm}
\] \\
\(\mathrm{y}_{2}=400+\) radius of sphere \(=400+100=\mathbf{5 0 0} \mathbf{~ m m}\)
\[
\begin{aligned}
\& \bar{Y}=\frac{V_{1} y_{1}+V_{2} y_{2}}{V}=\frac{\left(28.274 \times 10^{6} \times 200\right)+\left(4.188 \times 10^{6} \times 500\right)}{32.462 \times 10^{6}} \\
\& \bar{Y}=\mathbf{2 3 8 . 7 0 3} \mathbf{~ m m}
\end{aligned}
\]
\end{tabular} \& 1

1
1
1
1
1
1 \& 6

\hline
\end{tabular}

